RAPID COMMUNICATION

Synthesis and Fluorescence Investigation of Differently Substituted Benzo[b][1,8]Naphthyridines: Interaction with Different Solvents and Bovine Serum Albumin (BSA)

Deepak P. Shelar • Sandeep R. Patil • Ramhari V. Rote • Raghunath B. Toche • Madhukar N. Jachak

Received: 2 September 2010/Accepted: 25 November 2010/Published online: 9 December 2010 © Springer Science+Business Media, LLC 2010

Abstract A series of benzo[b][1, 8]naphthyridines has been synthesized by *Friedländer* condensation of 2aminoquinoline-3-carbaldehyde 1 (o-aminoaldehyde) with active methylenes in basic medium. The fluorescence spectroscopic properties of some representative compounds has been studied in different organic solvents; moreover interaction with bovine serum albumin (BSA) in phosphate buffer was examined by UV–vis and fluorescence spectroscopy. The effect of electron donor-acceptor substituents on fluorescence properties of benzo[b][1, 8]naphthyridines 13(a-n) has been investigated along with their fluorescent quantum yields.

Keywords Fluorophore · Solvatochromic effect · Bovine serum albumin (BSA) · Phosphate buffer · HOMO- LUMO

Introduction

In recent years, carbon rich organic compounds with a high degree of π -conjugation has received much attention because of their unique property as an ideal materials for advanced electronic and photonic applications, such as organic light-emitting diodes (OLEDs), liquid-crystal displays, thin-film transistors, solar cell and optical storage devices [1–19]. Large π -electron donor-acceptor compounds like ADMS, 9-(4-N,N-dimethylaminophenyl)-anthracene, has been the subject of intensive investigations

D. P. Shelar · S. R. Patil · R. V. Rote · R. B. Toche ·

M. N. Jachak (🖂)

Organic Chemistry Research Center, Department of Chemistry, K. T. H. M. College, Gangapur Road, Nashik 422002 MS, India e-mail: mnjachak@hotmail.com during past decade. Recently, several donor and/or acceptor substituted compounds related to carbazoles, acridines etc. were synthesized and photoinduced charged separation has been intensively studied [20-22]. The 4-N,N-dimethylaminophenyl derivatives of bis-pyrazolo[3,4-b;4'3'-e]pyridine and pyrazolo[3,4-b]quinoline are further representatives of bulky π -electron donor-acceptor compounds and were recently investigated in some detail both experimentally [23-28] as well as semiempirically [26, 29-31]. These are highly emissive in non-polar solvents and shows charge separation and dual fluorescence in polar protic solvents. The donor-acceptor diphenylpolyenes capable of fluorescing from their charge-transfer excited states and were studied for microenvironment of micelles and proteins [32-35]. From literature, it was observed that the photophysical properties of heterocyclic compounds in different organic solvents were little explored. Prompted with these literature reports, we undertook the synthesis and study photophysical properties of benzonaphthyridines obtained from 2-aminoquinoline-3-carbaldehyde (o-aminoaldehyde) 1. The construction of ring structures from orthoaminoaldehyde as a starting material has wide applicability for the annulation of various heterocyclic systems [36-56].

In our earlier communications [57-61], we have reported the synthetic utility of heterocyclic o-aminoaldehyde in which annulation of heterocyclic system on pyrazole and pyrazolopyridine nucleus were performed and recently [62] synthesis of fluorescent benzo[*b*][1, 8]naphthyridine-3carbonitrile using **1** has been reported. In this communication, we extend the work towards the synthesis of several linear polycyclic heterocycles from **1** and studied their photophysical properties. We also studied the effect of specific solvent-fluorophore interaction on absorption and emission of flurophore **13k**, **15b** as well as fluorescence properties of **13d**, **13k**, **15a** and **15b** in aqueous buffer and in bovine serum albumin (BSA) (a well known protein responsible for transport of a variety of ligands [63]) are studied. Photophysical properties of **13(a-n)** are also studied and compared absorption and emission maxima with reference to donor and acceptor substituents on D ring (Fig. 1). The substituent effect on the performance of **13(a-n)** and **15(a-d)** are studied by calculating HOMO, LUMO energies and electron hole gap by using MOPAC-2009 to investigate the fluorescence properties of **13** and **15**.

Result and Discussion

In continuation of our efforts to explore the synthetic applicability of o-aminoaldehyde 1 [62], we report herein condensation of 1 with different reactive methylenes to obtained polycyclic heterocycles. Thus, Friedländer condensation of 1a or 1b with active methylene nitriles such as malononitrile/cyanoacetamide in ethanol using piperidine as a base under reflux yielded 2-aminobenzo[b][1, 8] naphthyridine-3-carbonitrile 3(a-b) and 2-aminobenzo[b] [1, 8]naphthyridine-3-carboxymide 5(a-b) respectively in 83-87% yield. In this cyclization, the reactive methylene undergoes Aldol condensation with carbonyl of 1 then intramolecular attack of amino on nitrile to yield 3 or 5. However, the course of reaction of 1 with cyanoacetic ester 6a or diethyl malonate 6b is different under similar reaction conditions in which Aldol type condensation of aldehyde carbonyl of 1 with active methylene, then SN^2 attack of – NH₂ functionality on to ester, displacing ethoxy group. This cyclocondensation furnished tricyclic benzo[b][1, 8]naphthyridine derivatives 7(a-d) in good yield. It was interesting to observe that when condensation partner of 1 is acetoacetic ester 8 then Friedländer condensation occur via usual combined Schiff base formation and then Aldol condensation to furnished 9(a-b) in 83-84% yield. Surprisingly, ester functionality in 7(c-d) and 9(a-b) remains intact in the product, under basic reaction condition. Cyclocondensation of 1a or 1b with aliphatic ketones 10(a-b)and substituted acetophenones 12(a-g) under similar reaction condition smoothly yielded benzo[b][1, 8]naphthyridine 11(a-d) and 13(a-n) respectively in excellent yield.

Reactions of o-aminoaldehyde 1 (2-aminoquinoline-3carbaldehyde) with cyclic ketones are especially valuable for the construction of polycondensed heterocyclic rings. The synthesis of pentacyclic linear heterocycles can be achieved by condensation of 1a or 1b with indanone 14(ab). However, this condensation was unsuccessful under mild base such as piperidine, hence; this cyclocondensation was achieved by using strong base such as ethanolic KOH. Thus, condensation of 1a or 1b with indanone 14(a-b) vielded 9,10-dimethoxy-7H-benzo[b]indeno[1,2-g][1, 8] naphthyridine 15(a-d) in 80-89% yield (Scheme 1). Substituents of 13(a-n) and 15(a-d) are summarized in Tables 1 and 4. Synthesised compounds were characterized by spectroscopic and analytical methods. The spectroscopic data of 15b is discussed here. The ¹H NMR of **15b** shows three singlet at 3.88, 3.96 and 4.05 ppm corresponds to protons of three methoxy groups, singlet at 3.75 ppm corresponds to methylene protons. All aromatic protons shows expected chemical shifts and splitting patterns which resembles with the structure of 15b. The mass spectrum of 15b reveals a molecular ion peak m/z at 358. The ¹³C NMR spectrum of this compound in agreement with the structure proposed. (Scheme 1)

Semi-empirical study of Benzo[*b*][1, 8]naphthyridine 13(a-n) and 2,9,10-trimethoxy-7H-benzo[*b*]indeno[1,2-*g*] [1, 8]naphthyridine 15(a-d)

The heterocycles which are useful as Organic Light

Emitting Diodes (OLED) should fluoresces between 400-

700 nm and HOMO/LUMO or 'electron-hole' gap in the

Fig. 1 3D picture of benzo[b] [1, 8]naphthyridine 13(a-g) and 13(h-n)

Scheme 1 Synthesis of Benzo[b][1,8]naphthyridines

Table 1	The molecular electronic particular	roperties (HOMO-I	LUMO energy,	GAP) of the 2	2-(4-Bromophenyl)	benzo[b][1,	8]naphthyridine	13(a-n) and
9,10-dim	ethoxy-7H-benzo[b]indeno[1,2-g][1, 8]naphthy	ridine 15(a-d)					

Comp.	R	\mathbb{R}^1	\mathbb{R}^2	R ³	\mathbb{R}^4	HOMO (eV)	LUMO (eV)	GAP (eV)
13a	Н	Н	Н	Br	Н	-9.116	-1.601	7.515
13b	Н	Н	Н	Cl	Н	-9.156	-1.556	7.600
13c	Н	Н	CF ₃	Н	CF ₃	-9.616	-2.987	6.629
13d	Н	Н	Н	OCH ₃	Н	-8.672	-1.369	7.303
13e	Н	Н	OCH ₃	OCH ₃	Н	-8.401	-1.408	6.993
13f	Н	Н	Н	CH ₃	Н	-8.848	-1.387	7.461
13g	Н	Н	Н	NO ₂	Н	-10.288	-2.587	7.701
13h	OCH ₃	Н	Н	Br	Н	-9.187	-1.572	7.615
13i	OCH ₃	Н	Н	Cl	Н	-9.079	-1.580	7.499
13j	OCH ₃	Н	CF ₃	Н	CF ₃	-8.987	-1.750	7.237
13k	OCH ₃	Н	Н	OCH ₃	Н	-8.513	-1.330	7.183
131	OCH ₃	Н	OCH ₃	OCH ₃	Н	-8.247	-1.368	6.879
13m	OCH ₃	Н	Н	CH ₃	Н	-8.527	-1.342	7.185
13n	OCH ₃	Н	Н	NO ₂	Н	-8.994	-1.311	7.683
15a	Н	OCH ₃	OCH ₃	_	-	-8.329	-1.315	7.014
15b	OCH ₃	OCH ₃	OCH ₃	_	-	-8.234	-1.289	6.945
15c	Н	Н	Н	-	_	-8.849	-1.366	7.483
15d	OCH ₃	Н	Н	-	_	-8.787	-1.327	7.460

 $GAP = E_{LUMO} - E_{HOMO}$

range 2.7-3.0 eV i.e. low gap [64]. Prompted with these quotations, we have calculated HOMO-LUMO energies, electron hole gap of compounds 13 and 15 by using MOPAC-2009 (Version 8.331) [65, 66] and are summarized in Table 1. The charge is more concentrated on ring **D** as compared to ring A, B and C (Fig. 1). The donor chromophores (-CF₃,-OCH₃ groups) on ring **D** plays an important role in increasing the electron density and lowering electron hole gap. Compounds 13c, 13d, 13e, 13j, 13k, 13l and 13m shows low GAP values indicating higher overlapping of HOMO or LUMO orbitals which shows red shift and high quantum yields. On the other hand, HOMO-LUMO energies of compound 13g and 13n shows increase in GAP values due to presence of inductively and mesomerically electron withdrawing chromophore (-NO₂) i.e. lower overlapping of atomic orbitals, this shows blue shift and low quantum yields. Among 15, methoxy substituted derivatives 15a and 15b shows low GAP values, it fluoresces at longer wavelength and high quantum yields as compared to 15c and 15d. (Table 1)

Photophysical Properties

Effect of Solvent

The effects of solvents on fluorescence spectra are the result of specific interactions between the solvent and the fluorophore. Specific interactions are produced by one or a few neighboring molecules and are determined by specific chemical properties of both the fluorophore and the solvent [67, 68]. Specific effects can be due to hydrogen bonding, acid–base chemistry or charge-transfer interactions, to name a few of the possible origins. The emission

Table 2 Absorption maximum ($\lambda_{abs. max.}$), fluorescence emission maximum ($\lambda_{em. max.}$) and fluorescence quantum yield (ϕ_F) of 7-Methoxy-2-(4-methoxyphenyl)benzo[*b*][1, 8]- naphthyridine **13k** and

spectra of fluorophore are depends both on orientation polarizability of the solvent and chemical structure of fluorophore and solvent. Therefore solvent effect can cause large change in emission of fluorophore and hence more easily observed spectral shifts. The solvent-fluorophore interactions can be studied by examining the UV/vis and fluorescence spectra of fluorophore in variety of solvents. Thus, absorption and emission spectra of 13k and 15b were undertaken in variety of solvents such as non-polar aprotic (n-Hexane), polar aprotic (THF, DMF, acetonitrile, acetone) and polar protic (Methanol, Ethanol) at room temperature at same concentration i.e. 1.0×10^{-3} M. The absorption and fluorescence spectral data of 13k and 15b in different organic solvents are summarized in Table 2 and graphically represented in Fig. 2. The fluorescence maxima of these compounds are greatly affected by the solvent polarity. Such a behavior indicates that the fluorescent state is not the same as the initially populated locally excited state (LE state), but it is a polar state with a charge transfer character. We observed that as the solvent polarity is increased further, the emission spectra continue to shift to longer wavelength and each monomer shows a certain solvatochromism in both the absorption and the emission spectrum. The $\lambda_{abs.\ max}$ and $\lambda_{em.\ max}$ of fluorophore 13k and 15b are significantly red-shifted as the solvent polarity is increased from n-Hexane to acetonitrile. In non-polar aprotic solvents (such as n-Hexane), the fluorescence intensities are weak as well as a shift of the emission spectrum to shorter wavelength. It has been reported that in nitrogen heterocycles (e.g. quinoline, isoquinoline and acridine) there is a ${}^{1}n\pi^{*}$ state very close to the π - π^{*} state [69, 70]. In fact, in hydrocarbon solvents, the lowest excited singlet state in these molecules is of ¹n, π^* type. Most of these nitrogen heterocycles are weakly or non-fluorescent in non-polar and aprotic solvents. However, in polar-aprotic and

2,9,10-trimethoxy-7H-benzo[b]indeno[1,2-g][1, 8]naphthyridine **15b** in various solvents (ca 10^{-3}) at room temp^a

Solvent	13k	, , , , , , , , , , , , , , , , , , ,	15b			
	$\lambda_{abs. max.} [nm]^a$	λ _{em. max.} [nm] ^b	$\phi_F^{\ c}$	$\lambda_{abs. max.} [nm]^a$	λ _{em. max.} [nm] ^b	$\phi_F^{\ c}$
Hexane	388	464	0.25	373	469	0.29
THF	391	472	0.27	376	475	0.31
Methanol	402	480	0.29	379	479	0.33
Ethanol	399	478	0.28	380	481	0.34
Acetonitrile	396	484	0.32	387	489	0.36
DMF	398	486	0.33	381	489	0.37
Acetone	444	550	0.44	398	525	0.42

All measurements were performed under degassed conditions

 $^a\lambda_{abs.}$ is the absorption band at about $10^{-3}\,$ M in the different solvents

 $^b\lambda_{em.}$ is the fluorescence band at about $10^{\text{-3}}\,$ M in the different solvents

^c Fluorescence quantum yields; the values (\pm 0.01-0.03) are relative to that of quinine sulphate (0.57 in 10⁻³ M H₂SO₄)

Fig. 2 UV-vis absorption $(\lambda_{abs. max.})$ and fluorescence $(\lambda_{em. max.})$ spectra of 13k in solvents of different polarity

protic solvents, they become strongly fluorescent due to a reversal of n, π^* and π , π^* states [69, 70]. Thus, π - π^* is the lowest energy transition in these molecules in protic solvents. In protic solvents, the energy gap between ${}^{1}n$, π^{*} and ${}^{1}\pi$, π^{*} (lowest excited singlet state) is probably very small. In general, in the emission spectra, the emission bands are found to be similar in acetonitrile and DMF. On the other hand, in ethanol and methanol, the emission band shifts to the blue it may be due to intramolecular hydrogen bond interaction between solvent and fluorophore. As the absorption band shifts to the blue, the emission band also shifts to the local emission from the hydrogen bonded clusters. Thus, intramolecular hydrogen bonding between solvent-fluorophore interaction can often be identified by examining the emission spectra in different concentration of methanol. We thought that, fluorescence may increases as solvent polarity increases by increasing % of water, but surprisingly, we observed that intensity of this emission band to gradually increases and we

Fig. 3 Fluorescence emission spectra of 13k in methanol to which water was added. The % of water in the solvent were 1) 10% 2) 20% 3) 30% 4) 40%

noted that emission corresponding to only the monomer at 476 nm of 13k (Fig. 3). We observed that, emission is maximum in acetone because of acetone have keto-enol tautomerism due to this, conjugation increases as a result fluorophore may be fluoresces to longer wavelength in acetone. Thus UV/vis and fluorescence spectra of compounds 3(a-b), 5 (a-b), 7(a-d), 9(a-b), 11(a-d), 13(a-n) and 15(a-d) are taken in acetone. Fluorescence quantum yield of each were determined by standard literature procedure using quinine sulphate as a reference standard [71, 72] and are given in Tables 2, 3 and 4.

Table 3 Absorption maximum ($\lambda_{abs. max.}$), fluorescence emission maximum ($\lambda_{em. max.}$) and fluorescence quantum yield (ϕ_F) of 2-aminobenzo[*b*][1, 8]naphthyridine-3-carbonitrile **3 (a-b)**, 2-aminobenzo[*b*][1, 8]naphthyridine-3-carboxymide **5(a-b)**, 1,2-dihydro-2-oxobenzo[*b*][1, 8]naphthyridine-3-carboxymide **5(a-b)**, 1,2-dihydro-2-oxobenzo[*b*][1, 8]naphthyridine-3-carboxymide **7(a-d)**, Ethyl-2-methylbenzo[*b*][1, 8]-naphthyridine-3-carboxylate **9(a-b)** and 1-(2-methylbenzo[*b*][1, 8]naphthyridin-3-yl)- ethanone **11(a-d)** in acetone as the solvent (ca.10⁻³) at room temperature

Comp.	$\lambda_{abs.\ max.}\ [nm]^a$	$\lambda_{em.\ max.}\ [nm]^b$	${\phi_F}^c$	
3a	387	483	0.34	
3b	401	499	0.38	
5a	392	491	0.36	
5b	415	510	0.40	
7a	392	476	0.30	
7b	398	485	0.32	
7c	377	465	0.26	
7d	382	483	0.32	
9a	362	468	0.26	
9b	370	476	0.29	
11a	372	470	0.28	
11b	375	482	0.35	
11c	368	480	0.33	
11d	371	487	0.36	

All measurements were performed under degassed conditions

 $^a\lambda_{abs.}$ is the absorption band at about $10^{\text{--}3}\,$ M in acetone

 ${}^{b}\lambda_{em.}$ is the fluorescence band at about $10^{\text{-3}}\,$ M in acetone

 c Fluorescence quantum yields; the values (± 0.01-0.03) are relative to that of quinine sulphate (0.57 in $10^{-3}\,$ M $\rm H_2SO_4)$

Table 4 Absorption maximum ($\lambda_{abs. max.}$), fluorescence emission maximum ($\lambda_{em. max.}$) and fluorescence quantum yield (ϕ_F) of 2-(4-Bromophenyl)benzo[b][1, 8]naphthyridine **13(a-n)** and 9,10-dime-

thoxy-7H-benzo[b]indeno[1,2-g][1, 8]naphthyridine **15(a-d)** in acetone as the solvent (ca. 10^{-3}) at room temperature ^[a]

Comp.	R	\mathbb{R}^1	R ²	R ³	\mathbb{R}^4	$\lambda_{abs.\ max.}\ [nm]^{[b]}$	$\lambda_{em.\ max.}\ [nm]^{[c]}$	$\phi_{\mathbf{F}}^{[d]}$
13a	Н	Н	Н	Br	Н	398	469	0.29
13b	Н	Н	Н	Cl	Н	392	474	0.31
13c	Н	Н	CF ₃	Н	CF ₃	378	484	0.35
13d	Н	Н	Н	OCH ₃	Н	426	566	0.47
13e	Н	Н	OCH ₃	OCH ₃	Н	382	483	0.35
13f	Н	Н	Н	CH ₃	Н	388	480	0.34
13g	Н	Н	Н	NO_2	Н	383	441	0.18
13h	OCH ₃	Н	Н	Br	Н	414	480	0.33
13i	OCH ₃	Н	Н	Cl	Н	403	481	0.34
13j	OCH ₃	Н	CF ₃	Н	CF ₃	384	504	0.40
13k	OCH ₃	Н	Н	OCH ₃	Н	444	550	0.44
131	OCH ₃	Н	OCH ₃	OCH ₃	Н	401	498	0.39
13m	OCH ₃	Н	Н	CH ₃	Н	397	491	0.38
13n	OCH ₃	Н	Н	NO_2	Н	394	449	0.19
15a	Н	OCH ₃	OCH ₃	-	-	370	484	0.35
15b	OCH ₃	OCH ₃	OCH ₃	_	-	398	525	0.42
15c	Н	Н	Н	-	-	371	476	0.31
15d	OCH ₃	Н	Н	-	-	373	483	0.34

[a] All measurements were performed under degassed conditions. [b] $\lambda_{abs.}$ is the absorption band at about 10^{-3} M in acetone. [c] $\lambda_{em.}$ is the fluorescence band at about 10^{-3} M in acetone. [d] Fluorescence quantum yields; the values ($\pm 0.01-0.03$) are relative to that of quinine sulphate (0.57 in 10^{-3} M H₂SO₄)

Effect of Concentration

We also examined the effect of concentration on the fluorescence emission of **13k** in acetone. By increasing the concentration from 1.0×10^{-7} M (Fig. 4, line 1) to 1.0×10^{-3} M

Fig. 4 Effect of concentration on the fluorescence emission spectra of 13k recorded in acetone at room temperature (1) 1.0×10^{-7} M, (2) 1.0×10^{-6} M, (3) 1.0×10^{-5} M, (4) 1.0×10^{-3}

(Fig. 4, line 4), we observed that intensity of this emission band to gradually increases, and we noted that the emission corresponding to only the monomer at 550 nm (Fig. 4).

Effect of Electron Donor-Acceptor Substituents

From the Table 4, it was observed that fluorescence maxima of the compound 13(h-n) are larger than 13(a-g) may be due to presence of strong π -electron donor group i.e. -OCH₃ on the A ring except 13d (Fig. 1). The 3D picture of the benzonaphthyridines 13(a-n) is depicted in Fig. 1. From the Table 4, it was noted that compound 13c, 13d, 13e, 13j, 13k and 131 shows fluorescence band appearing at longer wavelength was substantially bathochromically shifted, we ascribe to the increased π -electron density on the **D** ring, arising from the electron donating nature of -CF₃ group (σ - π electron donor) at $C_3 \& C_5$ position (13c, 13j) and -OCH₃ group (π -electron donor) at para position (13d, 13k), at C₃ & C₄ position (13e, 13l) respectively. Among 13, the 13d and 13k displayed the largest bathochromic shift of absorption and fluorescence bands, which could be attributed to the methoxy group at para position on ring **D** having strongest electron donating ability having different substituents. On the other hand, blue shift was observed in 13g and 13n due to presence of electron acceptor group i.e. -NO2 group at para position on ring D. Another interesting feature was that halo substituted molecules (compounds 13a, 13b, 13h and 13i) shows less fluorescence, quantum yield than methoxy substituted compounds (φ_F =0.39-0.44). This may be due to the quenching of fluorescence with halogen atoms as the substitution. The comparative absorption and emission spectra of compounds 13j, 13k and 13n are graphically presented in Fig. 5. We also noted that among 15, the methoxy substituted compounds i.e. 15(a-b) shows more fluorescence and quantum yields as compare to 15(c-d) may be due to presence of -OCH₃ group in 15(a-b) [R¹=R²=OCH₃] (Table 4).

The Effect of BSA on the Fluorescence Emission

of Compounds 13d, 13k, 15a and 15b in Phosphate Buffer

In order to examine the interaction of 13d, 13k, 15a and 15b with bovine serum albumin (BSA), the fluorescence titrations with BSA, was carried out in phosphate buffer of pH 7.4. The absorption and fluorescent spectral data of 13d, 13k, 15a and 15b are collected in Table 5 and $\lambda_{em, max}$ is graphically presented in Fig. 6. We observed the blue shift of $\lambda_{em, max}$ for 13d, 13k, 15a and 15b. We also examined the effect of increasing BSA concentration on fluorescence emission and noted that gradually increase in the concentration of BSA in the solutions of 13k in phosphate buffer results in an enhancement of the fluorescence emission and quantum yield (ϕ_F) (Fig. 7). The blue shift in the $\lambda_{em. max.}$ suggests that the polarities of the protein environments in which the benzo[b][1, 8]naphthyridines are located are less that the polarity of the bulk aqueous phase since similar blue shifts are observed in less polar organic solvents. This shows the binding of the probes to a hydrophobic site of the protein.

Conclusion

In summary, the tetracyclic and pentacyclic linear heterocycles are synthesized by *Friedländer* condensation of

Fig. 5 The comparative absorption (UV λ_{Max} .) and fluorescence (Em λ_{Max} .) spectra of compounds 13j, 13k and 13n respectively

Table 5 Absorption maximum ($\lambda_{abs. max.}$), fluorescence emission maximum ($\lambda_{em. max.}$) and fluorescence quantum yield (ϕ_F) of benzo[*b*] [1, 8]naphthyridine (**13d**, **13k**) and 9,10-dimethoxy-7H-benzo[*b*] indeno[1,2-g][1, 8]naphthyridine (**15a**, **15b**) in phosphate buffer (pH, 7.4) and BSA (5.0×10^{-6} mol L⁻¹)

Compound	$\lambda_{abs.\ max.}\ (nm)$		λ _{em. max}	(nm)	$\phi_F (\pm 0.002)$	
	Buffer	BSA	Buffer	BSA	Buffer	BSA
13d	390	391	572	504	0.42	0.46
13k	397	398	560	496	0.40	0.45
15a	386	388	488	440	0.33	0.38
15b	393	392	533	472	0.39	0.42

activemethylene nitrile, active methylene and cyclic ketone such as indanone with 1. Our methods have several additional advantages such as milder reaction condition, shorter reaction time, scalable and lack of side product. UV-vis absorption and emission spectroscopic studies of 13k and 15b have been done in three types of solvents i.e. non-polar aprotic, polar aprotic, polar protic and it exhibit solvatochromic fluorescence emission in organic solvents. The interaction of 13d, 13k, 15a and 15b with BSA have been investigated by UV-vis absorption and fluorescence spectroscopy and observed that the $\lambda_{em, max}$. gets blue-shifted upon binding with BSA. However the fluorescence intensity enhancement is linear with the increasing in BSA concentration (13k). The fluorescence properties of benzo[b][1, 8]naphthyridines 13(a-n) depend upon the nature of substituents present on ring **D**. Thus, benzo[b][1, 8]naphthyridines 13(a-n) bearing electronreleasing group i.e. substituents like di-CF₃ and -OMe (Compound 13c, 13j, 13d, 13e, 13k and 13l) on ring D (Fig. 1) fluoresces at longer wavelength as compared with the electron-withdrawing group like -NO₂ (Compound 13g, 13n) on ring D (Fig. 1) at the para position. From empirical calculations, we revels that benzo[b][1, 8]

Fig. 6 Comparative fluorescence (Em λ_{Max} .) spectra of 13d, 13k, 15a and 15b: A] In Phosphate Buffer, B] In BSA

naphthyridines (13a-n and 15a-d) which shows low electron hole gap values (e.g. 13c, 13d, 13e, 13j, 13k, 13l, 13m, 15a and 15b) are fluoresces at longer wavelength and have high quantum yields, while compounds with higher electron hole gap (e.g. 13b, 13g, 13h and 13n) are fluoresces at shorter wavelength with low quantum yields and are in agreement with theoretical observations. This study has brought out interesting substituent and solventdependent fluorescence properties of benzonaphthyridines. The efficient blue light emission and physical and chemical stability makes these benzonaphthyridine derivatives as a promising family of materials which may be useful in photophysical applications. All these synthesized compounds are addition to the library of new heterocyclic compounds.

Fig. 7 Fluorescence emission spectra of 13k with increasing BSA concentration; curves a-e correspond to [BSA] 1.0, 2.0, 3.0, 4.0 and 5.0 (x 10⁻⁶ mol L⁻¹), respectively

Experimental

General

Bovine serum albumin (BSA) and Quinine sulphate was purchased from HiMedia Laboratories Pvt. Ltd. Mumbai (India) and Research-Lab Fine Chem Industries, Mumbai (India) respectively. All other chemicals, reagents and solvents were obtained from LOBA Chemie. Pvt. Ltd., Mumbai (India), Spectrochem, Mumbai (India) and E. Merck (India). All AR-grade organic solvents were dried and freshly distilled prior to use. The UV-grade solvents were used for spectral studies. Melting points were determined on a Gallenkamp melting point apparatus, Mod. MFB595 in open capillary tubes and are uncorrected. Fourier transform infrared (FTIR) spectra in KBr disk were measured on a Shimadzu FTIR-408 spectrophotometer. ¹H NMR and ¹³C NMR spectra were recorded on a Varian XL-300 MHz spectrometer using tetramethylsilane (TMS) as internal standard and solvents are deuterio-chloroform (CDCl₃) and deuterio-dimethylsulphoxide (DMSO- d_6). Chemical shifts are reported in ppm from internal tetramethylsilane standard and are given in δ -units. High-resolution mass spectra are obtained with a Mat 112 Varian Mat Bremen (70 eV) mass spectrometer. Elemental analyses are performed on a Hosli CH-Analyzer and are within ± 0.3 of the theoretical percentage. The absorption spectra were measured using a Shimadzu UV-1601 UV-VIS spectrophotometer. The fluorescence spectra were recorded on a RF-5301 PC spectrofluorophotometer by exciting the samples at their absorption maximum ($\lambda_{abs. max.}$). Compounds for UV and fluorescence measurements are dissolved in acetone, UV and fluorescence scan are recorded from 200 to 600 nm. The $\Phi_{\rm f}$ relative to quinine sulphate in 1.0×10^{-3} mol L⁻¹ H₂SO₄ (Φ_f =0.57) was measured at room temperature by standard literature procedure [73-75]. Both

samples and standard were excited at the same excitation wavelength and the optical density (OD) of the standard and the sample was adjusted to be nearly equal. For all electronic spectroscopic studies (absorption, fluorescence excitation and emission) 1.0×10^{-3} mol L⁻¹ solutions of the compounds were used. All reactions are monitored by thin layer chromatography, carried out on 0.2 mm silica gel 60 F₂₅₄ (Merck) plates using UV light (250 and 400 nm) and Fluorescence light (400 and 600 nm) for detection. For fluorescence quenching studies, the required amount of BSA solution (in phosphate buffer) and the required amount of benzo[b][1, 8]naphthyridines solution in dimethylsulphoxide (DMSO) $(1.0 \times 10^{-4} \text{ mol } \text{L}^{-1})$ were taken in a 5 ml volumetric flask. Since the benzo[b][1, 8]naphthyridines are sparingly soluble in water, their stock solutions were prepared in DMSO, which is used as a solvent for interaction studies of serum albumins [76].

Synthesis

Synthesis of 2-Aminobenzo[b][1, 8]Naphthyridine-3-Carbonitrile (3a, b) A mixture of 2-aminoquinoline-3-carbaldehyde (1a-b) (0.01 mol) & malononitrile 2 (0.01 mol) in ethanol (10 mL) containing catalytic amount of piperidine was refluxed for 1 h. After completion of reaction (TLC checked), reaction mixture was cooled to room temperature. The separated solid product was collected by suction filtration, washed with cold methanol (10 mL), dried under vacuum and recrystallized from Ethanol: DMF (90:10) (v: v).

2-Aminobenzo[b][1, 8]Naphthyridine-3-Carbonitrile (3a) Yield: 0.184 g (83%), recrystallized from Ethanol: DMF (90:10) to afford yellow solid; M.p. 283–286 °C, IR (KBr): 3,413 m, 3,375 m, 2,911 s, 2,219 s, 1,633 scm^{-1.} ¹H NMR (300 MHz DMSO- d_6) δ : 7.39 (dd, 1 H, J=8.2 & 8.5 Hz, Ar-H), 7.53 (bs, 2 H, NH), 7.77 (dd, 1 H, J=8.5 & 8.1 Hz, Ar-H), 7.92 (d, 1 H, J=8.2 Hz, Ar-H), 8.08 (d, 1 H, J= 8.1 Hz, Ar-H), 8.66 (s, 1 H, Ar-H), 8.78 (s, 1 H, Ar-H). MS (70 eV) m/z (%): 220 [M⁺] (20), 193 (30), 150 (20), 136 (60), 105 (40), 77 (40). Anal. Calcd. for C₁₃H₈N₄ (220.23): C, 70.90; H, 3.63; N, 25.45% Found: C, 70.93; H, 3.60; N, 25.46%

7-*Methoxy-2-Amino[b]*[1, 8]*Naphthyridine-3-Carbonitrile* (3b) Yield: 0.218 g (87%), recrystalized from Ethanol: DMF (80: 20) to afford yellow needles; M.p. 278–281 °C. IR (KBr): 3,442 m, 3,378 m, 2,914 s, 2,230 s, 1,621 s, 1,019 mcm^{-1.1}H NMR (300 MHz DMSO- d_6) δ : 3.93 (s, 3 H, OCH₃), 6.99 (bs, 2 H, NH), 7.43 (d, 1 H, *J*=9.0 Hz, Ar-H), 7.51 (s, 1 H, Ar-H), 8.24 (d, 1 H, *J*=9.0 Hz, Ar-H), 9.21 (s, 1 H, Ar-H), 9.44 (s, 1 H, Ar-H). ¹³C NMR (75 MHz DMSO- d_6) δ : 58.32, 98.26, 108.11, 112.44, 122.78, 123.36, 128.21, 132.66, 133.43, 146.53, 148.27,

156.34, 158.74, 159.63. MS (70 eV) m/z (%): 250 [M⁺] (79), 223 (44), 207 (49), 130 (51), 69 (28), 44 (61), 32 (74). Anal. Calcd. for $C_{14}H_{10}N_4O$ (250.26): C, 67.20; H, 4.00; N, 22.40% Found: C, 67.18; H, 3.98; N, 22.38%

Synthesis of 2-Aminobenzo[b][1, 8]Naphthyridine-3-Carboxymide (5a, b) A mixture of 2-aminoquinoline-3-carbaldehyde (**1a-b**) (0.01 mol) & cyanoacetamide **4** (0.01 mol) in ethanol (10 mL) containing catalytic amount of piperidine was refluxed for 2 h. After completion of reaction (TLC checked), reaction mixture was cooled to room temperature. The separated solid product was collected by suction filtration, washed with cold methanol (10 mL), dried under vacuum and recrystallized from Ethanol: DMF (70: 30) (v: v).

2-Aminobenzo[b][1, 8]Naphthyridine-3-Carboxymide (5a) Yield 0.204 g (85%), recrystallised from Ethanol: DMF (70: 30) to afford yellow solid; M.p. 289–292 °C, IR (KBr): 3,440 m, 3,410 m, 3,245 m, 3,197 m, 2,929 m, 1,671 s, 1,613 scm⁻¹, ¹H NMR (300 MHz DMSO- d_6) &: 7.15 (dd, 1 H, J=7.9 & 8.2 Hz, Ar-H), 7.46 (bs, 2 H, NH), 7.89 (dd, 1 H, J=8.2 & 8.6 Hz, Ar-H), 8.04 (d, 1 H, J=7.9 Hz, Ar-H), 8.17 (d, 1 H, J=8.6 Hz, Ar-H), 8.40 (bs, 2 H, NH), 8.82 (s, 1 H, Ar-H), 8.96 (s,1 H, Ar-H). MS (70 eV) m/z (%): 238 [M⁺] (78), 221 (31), 194 (76), 166 (62), 139 (59), 110 (45), 77 (67). Anal. Calcd. for C₁₃H₁₀N₄O (238.24): C, 65.54; H, 4.20; N, 23.52% Found: C, 65.55; H, 4.21; N, 23.55%

2-Amino-7-Methoxybenzo[b][1, 8]Naphthyridine-3-Carboxymide (5b) Yield 0.232 g (86%), recrystallised from Ethanol: DMF (80:20) to afford yellow prism, M.p. 283–285 °C. IR (KBr): 3,448 m, 3,419 m, 3,266 m, 3,207 m, 2,955 s, 1,675 s, 1,612 s, 1,022 mcm⁻¹. ¹H NMR (300 MHz DMSO- d_6) δ : 4.01 (s, 3 H, OCH₃), 7.10 (d, 1 H, J=8.7 Hz, Ar- H), 7.21 (s, 1 H, Ar-H), 7.72 (bs, 2 H, NH), 7.98 (d, 1 H, J=8.7 Hz, Ar-H), 8.34 (bs, 2 H, NH), 8.61 (s, 1 H, Ar-H), 8.65 (s, 1 H, Ar-H). ¹³C NMR (75 MHz DMSO- d_6) δ : 55.47, 105.04, 114.51, 115.62, 118.23, 120.37, 130.19, 138.19, 139.98, 152.95, 155.91, 159.36, 161.94, 169.00. MS (70 eV) m/z (%): 268 [M⁺] (77), 251 (41), 225 (73), 196 (29), 181 (33), 44 (49), 32 (71). Anal. Calcd. for C₁₄H₁₂N₄O₂ (268.27): C, 62.68; H, 4.47; N, 20.89%. Found: C, 62.66; H, 4.48; N, 20.88%.

Synthesis of 1,2-Dihydro-2-Oxobenzo[b][1, 8]Naphthyridine-3-Carbonitrile (7 a-d) A mixture of 2-aminoquinoline-3-carbaldehyde (**1a-b**) (0.01 mol) & ethylcyanoacetate (**6a**) (0.01 mol) in ethanol (10 mL) containing catalytic amount of piperidine was refluxed for 2 h. After completion of reaction (TLC checked), reaction mixture was cooled to room temperature. The separated solid product was collected by suction filtration, washed with cold methanol or pet-ether, dried under suction and recrystallized from Ethanol: DMF (80: 20) (v: v) or Ethanol.

1,2-Dihydro-2-Oxobenzo[b][1, 8]Naphthyridine-3-Carbonitrile (7a) Yield: 0.179 g (80%), recrystalized from Ethanol: DMF (80: 20) to afford pale yellow crystal; M.p. 261– 264 °C. IR (KBr): 3,240 m, 2,912 m, 2,244 s, 1,674 s, 1,601 scm⁻¹. ¹H NMR (300 MHz DMSO- d_6) δ : 7.22 (bs, 1 H, NH), 7.84 (dd, 1 H, J=8.2 & 8.6 Hz, Ar-H), 7.97 (dd, 1 H, J=8.6 & 8.0 Hz, Ar-H), 8.09 (d, 1 H, J=8.2 Hz, Ar-H), 8.39 (d, 1 H, J=8.0 Hz, Ar-H), 9.02 (s, 1 H, Ar-H), 9.13 (s, 1 H, Ar-H). MS (70 eV) m/z (%): 221 [M⁺] (85), 193 (96), 178 (87), 150 (61), 127 (67), 96 (54), 77 (42), 44 (64). Anal. Calcd. for C₁₃H₇N₃O (221.21): C, 70.58; H, 3.16; N, 19.00%. Found: C, 70.56; H, 3.18; N, 18.98%.

1,2-Dihydro-7-Methoxy-2-Oxobenzo[b][1, 8]Naphthyridine-3-Carbonitrile (7b) Yield: 0.218 g (86%), recrystalized from Ethanol: DMF (70: 30) to afford yellow needles; M.p. 256–258 °C. IR (KBr): 3,256 m, 2,902 m, 2,239 s, 1,669 s, 1,598 s, 1,027 mcm^{-1.1}H NMR (300 MHz DMSO- d_6) δ : 4.03 (s, 3 H, OCH₃), 6.92 (bs, 1 H, NH), 7.25 (d, 1 H, J= 8.6 Hz, Ar-H), 7.47 (s, 1 H, Ar-H), 8.12 (d, 1 H, J=8.6 Hz, Ar-H), 9.31 (s, 1 H, Ar-H), 9.49 (s, 1 H, Ar-H). ¹³C NMR (75 MHz DMSO- d_6) δ : 58.13, 98.47, 107.46, 109.11, 114.45, 123.65, 124.73, 126.88, 129.40, 135.29, 145.73, 154.32, 158.23, 166.30. MS (70 eV) m/z (%): 251 [M⁺] (72), 223 (67), 208 (51), 193 (38), 180 (89), 153 (62), 126 (60), 44 (81). Anal. Calcd. for C₁₄H₉N₃O₂ (251.24): C, 66.93; H, 3.58; N, 16.73% Found: C, 66.96; H, 3.60; N, 16.71%

Ethyl-1,2-Dihydro-2-Oxobenzo[b][1, 8]Naphthyridine-3-Carboxylate (7c) Yield: 0.232 g (86%), recrystalized from ethanol to afford pale yellow solid; M.p. 195–198 °C. IR (KBr): 3,221 m, 2,901 s, 1,738 s, 1,669 s, 1,618 s, 1,022 m cm⁻¹. ¹H NMR (300 MHz CDCl₃) δ : 1.77 (t, 3 H, *J*= 5.3 Hz, CH₃), 4.34 (q, 2 H, *J*=5.3 Hz, CH₂), 7.18 (bs, 1 H, NH), 7.29 (dd, 1 H, *J*=7.7 & 8.1 Hz, Ar-H), 7.57 (dd, 1 H, *J*=8.1 & 8.4 Hz, Ar-H), 7.92 (d, 1 H, *J*=7.7 Hz, Ar-H), 8.32 (d, 1 H, *J*=8.4 Hz, Ar-H), 9.12 (s, 1 H, Ar-H), 9.23 (s, 1 H, Ar-H). MS (70 eV) m/z (%): 268 [M⁺] (79), 223 (66), 195 (76), 166 (59), 122 (64), 77 (48), 45 (34). Anal. Calcd. for C₁₅H₁₂N₂O₃ (268.27): C, 67.16; H, 4.47; N, 10.44% Found: C, 67.18; H, 4.45; N, 10.42%

Ethyl-1,2-Dihydro-7-Methoxy-2-Oxobenzo[b][1, 8]Naph-thyridine-3-Carboxylate (7d) Yield: 0.260 g (87%), recrystalized from ethanol to afford yellow needles; M.p. 185–188 °C. IR (KBr): 3,249 m, 2,912 s, 1,737 s, 1,674 m, 1,601 s, 1,027 scm^{-1.1}H NMR (300 MHz CDCl₃) δ : 1.88 (t, 3 H, *J*=5.2 Hz, CH₃), 3.98 (s, 3 H, OCH₃), 4.28 (q, 2 H, *J*=5.2 Hz, CH₂), 6.28 (bs, 1 H, NH), 7.31 (d, 1 H, *J*= 8.6 Hz, Ar-H), 7.61 (s, 1 H, Ar-H), 8.29 (d, 1 H, *J*=8.6 Hz,

Ar-H), 9.20 (s, 1 H, Ar-H), 9.40 (s, 1 H, Ar-H). ¹³C NMR (75 MHz DMSO- d_6) δ : 19.22, 55.89, 66.72, 104.22, 120.51, 121.20, 121.88, 122.26, 126.47, 132.77, 135.24, 141.02, 152.13, 161.23, 162.88, 167.34. MS (70 eV) m/z (%): 298 [M⁺] (76), 253 (68), 226 (91), 198 (79), 183 (51), 127 (52), 44 (31). Anal. Calcd. for C₁₆H₁₄N₂O₄ (298.29): C, 64.42; H, 4.69; N, 9.39% Found: C, 64.43; H, 4.71; N, 9.37%

Synthesis of Ethyl-2-Methylbenzo[b][1, 8]Naphthyridine-3-Carboxylate (9 a-b) A mixture of 2-aminoquinoline-3carbaldehyde (1a-b) (0.01 mol) & ethylacetoacetate (8) (0.01 mol) in ethanol (10 mL) containing 2-3 drops of piperidine was refluxed for 1 h. After completion of reaction (TLC checked), reaction mass dumped over icecrushed water (20 mL) and stirred for the 30 mins., separated solid was filtered by suction, washed with cold n-hexane (20 mL), dried under vacuum and recrystallized from Ethanol or Toluene.

Ethyl-2-Methylbenzo[b][1, 8]*Naphthyridine-3-Carboxylate* (9*a*) Yield: 0.222 g (83%), recrystalized from ethanol to afford yellow crystal; M.p. 264-267 °C. IR (KBr): 2,945 m, 1,738 s, 1,612 s, 1,018 mcm⁻¹. ¹H NMR (300 MHz CDCl₃) δ : 1.69 (t, 3 H, *J*=5.9 Hz, CH₃), 2.79 (s, 3 H, CH₃), 4.33 (q, 2 H, *J*=5.9 Hz, CH₂), 7.34 (dd, 1 H, *J*=8.2 & 8.7 Hz, Ar-H), 7.79 (dd, 1 H, *J*=8.7 & 8.1 Hz, Ar-H), 8.09 (d, 1 H, *J*= 8.2 Hz, Ar-H), 8.36 (d, 1 H, *J*=8.1 Hz, Ar-H), 8.78 (s, 1 H, Ar-H), 9.19 (s, 1 H, Ar-H). MS (70 eV) m/z (%): 266 [M⁺] (95), 251 (89), 213 (85), 197 (64), 158 (80), 77 (71), 69 (47), 53 (38). Anal. Calcd. for C₁₆H₁₄N₂O₂ (266.29): C, 72.18; H, 5.26; N, 10.52% Found: C, 72.15; H, 5.24; N, 10.50%

Ethyl-7-Methoxy-2-Methylbenzo[b][1, 8]Naphthyridine-3-Carboxylate (9b) Yield: 0.249 g (84%), recrystalized from ethanol to afford yellow needles; M.p. 257-260 °C. IR (KBr): 2,940 m, 1,740, 1,619 s, 1,024 mcm^{-1.1}H NMR (300 MHz CDCl₃) δ : 1.72 (t, 3 H, *J*=4.8 Hz, CH₃), 2.66 (s, 3 H, CH₃), 3.96 (s, 3 H, OCH₃), 4.43 (q, 2 H, *J*=4.8 Hz, CH₂), 7.43 (d, 1 H, *J*=8.8 Hz, Ar-H), 7.56 (s, 1 H, Ar-H), 8.24 (d, 1 H, *J*=8.8 Hz, Ar-H), 9.21 (s, 1 H, Ar-H), 9.44 (s, 1 H, Ar-H). ¹³C NMR (75 MHz CDCl₃) δ : 19.24, 26.72, 59.33, 68.45, 110.21, 121.47, 123.57, 126.94, 129.78, 132.43, 137.44, 138.73, 147.87, 154.27, 158.94, 159.64, 169.09. MS (70 eV) m/z (%): 296 [M⁺] (69), 277 (94), 253 (74), 224 (41), 182 (57), 152 (59), 127 (49), 77 (64), 44 (88). Anal. Calcd. for C₁₇H₁₆N₂O₃ (296.32): C, 68.91; H, 5.40; N, 9.45%. Found: C, 68.90; H, 5.42; N, 9.47%.

Synthesis of 1-(2-Methylbenzo[b][1, 8]Naphthyridin-3-yl) Ethanone (11 a-d) A mixture of 2-aminoquinoline-3-carbaldehyde (1a-b) (0.01 mol) & acetyl acetone (10a) (0.01 mol) in ethanol (10 mL) containing 2-3 drops of piperidine was refluxed for 1 h. After completion of reaction (TLC checked), reaction mass dumped over icecrushed water (20 mL) and stirred for the 30 mins., separated solid was filtered by suction, washed with cold n-hexane (20 mL), dried under vacuum and recrystallized from Ethanol or Toluene.

1-(2-Methylbenzo[b][1, 8]Naphthyridin-3-yl)Ethanone (*11a*) Yield: 0.201 g (85%), recrystalized from ethanol to afford faint yellow solid; M.p. 204-206 °C. IR (KBr): 2,945 s, 1,705 s, 1,632 scm^{-1. 1}H NMR (300 MHz CDCl₃) δ : 2.55 (s, 3 H, CH₃), 2.89 (s, 3 H, CH₃), 7.46 (dd, 1 H, *J*=7.8 & 8.4 Hz, Ar-H), 7.83 (dd, 1 H, *J*=8.4 & 8.3 Hz, Ar-H), 8.17 (d, 1 H, *J*=7.8 Hz, Ar-H), 8.29 (d, 1 H, *J*=8.3 Hz, Ar-H), 8.78 (s, 1 H, Ar-H), 9.19 (s, 1 H, Ar-H). MS (70 eV) m/z (%): 236 [M⁺] (79), 221 (74), 205 (67), 193 (47), 190 (69), 152 (39), 121 (49), 77 (64), 44 (81), 31 (64). Anal. Calcd. for C₁₅H₁₂N₂O (236.27): C, 76.27; H, 5.08; N, 11.86% Found: C, 76.28; H, 5.10; N, 11.88%

1-(7-Methoxy-2-Methylbenzo[b][1, 8]Naphthyridin-3-yl) Ethanone (11b) Yield: 0.230 g (86%), recrystalized from ethanol to afford pale yellow needles; M.p. 214-217 °C. IR (KBr): 2,959 m, 1,712 s, 1,620 s, 1,024 scm^{-1.1}H NMR (300 MHz CDCl₃) δ : 2.44 (s, 3 H, CH₃), 2.72 (s, 3 H, CH₃), 4.09 (s, 3 H, OCH₃), 7.31 (d, 1 H, *J*=8.8 Hz, Ar-H), 7.46 (s, 1 H, Ar-H), 8.18 (d, 1 H, *J*=8.8 Hz, Ar-H), 9.11 (s, 1 H, Ar-H), 9.39 (s, 1 H, Ar-H). ¹³C NMR (75 MHz CDCl₃) δ : 18.24, 28.76, 59.84, 109.44, 124.31, 125.74, 129.16, 133.43, 135.24, 136.37, 138.47, 147.89, 156.74, 159.21, 161.47, 187.20. MS (70 eV) m/z (%): 266 [M⁺] (100), 251 (94), 223 (32), 182 (95), 139 (46), 44 (51). Anal. Calcd. for C₁₆H₁₄N₂O₂ (266.29): C, 72.18; H, 5.26; N, 10.52%. Found: C, 72.19; H, 5.29; N, 10.50%.

2-Methylbenzo[b][1, 8]Naphthyridine (11c) Yield: 0.155 g (79%), recrystalized from toluene to afford faint yellow solid; M.p. 90-93 °C. IR (KBr): 2,978 s, 1,626 scm⁻¹. ¹H NMR (300 MHz CDCl₃) δ : 2.92 (s, 3 H, CH₃), 7.22 (dd, 1 H, *J*= 7.9 & 8.7 Hz, Ar-H), 7.37 (d, 1 H, *J*=8.5 Hz, Ar-H), 7.67 (dd, 1 H, *J*=8.7 & 8.3 Hz, Ar-H), 8.14 (d, 1 H, *J*=7.9 Hz, Ar-H), 8.25 (d, 1 H, *J*=8.3 Hz, Ar-H), 8.48 (d, 1 H, *J*= 8.5 Hz, Ar-H), 9.25 (s, 1 H, Ar-H). ¹³C NMR (75 MHz CDCl₃) δ : 24.11, 121.55, 123.47, 126.74, 127.41, 127.94, 128.56, 129.47, 135.67, 138.66, 148.72, 153.48, 157.49. Anal. Calcd. for C₁₃H₁₀N₂ (194.23): C, 80.41; H, 5.15; N, 14.43% Found: C, 80.43; H, 5.17; N, 14.49%

7-Methoxy-2-Methylbenzo[b][1, 8]Naphthyridine (11d) Yield: 0.187 g (83%), recrystalized from toulene to afford green needles; M.p. 84-86 °C. IR (KBr): 2,968 s, 1,618 s, 1,025 mcm⁻¹.¹H NMR (300 MHz CDCl₃) δ : 3.12 (s, 3 H, CH₃), 4.02 (s, 3 H, OCH₃), 7.29 (d, 1 H, J=8.2 Hz, Ar-H), 7.48 (d, 1 H, J=9.0 Hz, Ar-H), 7.56 (s, 1 H, Ar-H), 8.31 (d, 1 H, J=9.0 Hz, Ar-H), 8.57 (d, 1 H, J=8.2 Hz, Ar-H), 9.37 (s, 1 H, Ar-H). MS (70 eV) m/z (%): 224 [M⁺] (82), 201 (77), 181 (64), 152 (47), 77 (87), 51 (78). Anal. Calcd. for C₁₄H₁₂N₂O (224.26): C, 75.00; H, 5.35; N, 12.50% Found: C, 75.02; H, 5.37; N, 12.48%

Syntesis of 2-(4-Bromophenyl)Benzo[b][1, 8]Naphthyridine (13 a-n) A solution of **1a-b** (0.001 mol) and pbromoacetophenone (**12a**) (0.001 mol) in ethanol (10 mL) containing catalytic amount of piperidine was refluxed for 2 h. Completion of the reaction was monitored by thin layer chromatography (TLC). The mixture was then cooled to room temperature; the separated solid product was collected by suction filtration, washed with pet-ether, dried and recrystallized from ethanol.

2-(4-Bromophenyl)Benzo[b][1, 8]Naphthyridine (13a) Yield: 0.301 g (90%), recrystalized from ethanol to afford faint yellow solid; M.p. 95-98 °C. IR (KBr): 3,018 m, 1,640 scm^{-1.} ¹H NMR (300 MHz CDCl₃) δ : 7.46 (dd, 1 H, J=8.2 & 8.6 Hz, Ar-H), 7.52 (d, 2 H, J=8.3 Hz, Ar-H), 7.77 (dd, 1 H, J=8.6 & 8.1 Hz, Ar-H), 7.92 (d, 1 H, J= 8.2 Hz, Ar-H), 8.02 (d, 1 H, J=8.1 Hz, Ar H), 8.12 (d, 1 H, J=7.8 Hz, Ar-H), 8.22 (d, 2 H, J=8.3 Hz, Ar-H), 8.42 (d, 1 H, J=7.8 Hz, Ar-H), 9.23 (s, 1 H, Ar-H). MS (70 eV) m/z (%): 334 [M⁺] (84), 336 [M+2] (80), 255 (89), 212 (68), 207 (59), 179 (63), 77 (78). Anal. Calcd. for C₁₈H₁₁N₂Br (335.20): C, 64.67; H, 3.29; N, 8.38% Found: C, 64.65; H, 3.30; N, 8.39%

2-(4-Chlorophenyl)Benzo[b][1, 8]Naphthyridine (13b) Yield: 0.233 g (80%), recrystalized from ethanol to afford faint brown solid; M.p. 120-123 °C. IR (KBr): 3,030 m, 1,646 scm^{-1. 1}H NMR (300 MHz CDCl₃) δ : 7.29 (dd, 1 H, J=8.1 & 8.4 Hz, Ar-H), 7.42 (d, 2 H, J=8.3 Hz, Ar-H), 7.57 (dd, 1 H, J=8.4 & 8.5 Hz, Ar-H), 7.79 (d, 1 H, J= 8.1 Hz, Ar-H), 8.10 (d, 1 H, J=8.5 Hz, Ar H), 8.22 (d, 1 H, J=7.8 Hz, Ar-H), 8.36 (d, 2 H, J=8.3 Hz, Ar-H), 8.51 (d, 1 H, J=7.8 Hz, Ar-H), 9.03 (s, 1 H, Ar-H). Anal. Calcd. for C₁₈H₁₁N₂Cl (290.75): C, 74.48; H, 3.79; N, 9.65% Found: C, 74.52; H, 3.77; N, 9.68%

2-(3, 5-Bis (trifluoromethyl)Phenyl)Benzo[b][1, 8] Naphthyridine (13c) Yield: 0.344 g (87%), recrystalized from ethanol to afford yellow solid; M.p. 102-105 °C. IR (KBr): 3,028 m, 1,649 scm⁻¹. ¹H NMR (300 MHz CDCl₃) δ : 7.38 (dd, 1 H, J=8.3 & 8.7 Hz, Ar-H), 7.60 (dd, 1 H, J= 8.7 & 8.5 Hz, Ar-H), 7.84 (d, 1 H, J=8.3 Hz, Ar-H), 7.93 (d, 1 H, J=7.9 Hz, Ar-H), 8.18 (d, 1 H, J=8.5 Hz, Ar-H), 8.34 (d, 1 H, J=7.9 Hz, Ar-H), 8.42 (s, 1 H, Ar-H), 9.24 (s, 2 H, Ar-H), 9.47 (s, 1 H, Ar-H). MS (70 eV) m/z (%): 392 [M⁺] (59), 351 (78), 323 (80), 254 (66), 254 (56), 213 (47), 179 (79). Anal. Calcd. for $C_{20}H_{10}N_2F_6$ (392.30): C, 61.22; H, 2.55; N, 7.14% Found: C, 61.23; H, 2.56; N, 7.12%

2-(4-Methoxyphenyl)Benzo[b][1, 8]Naphthyridine (13d) Yield: 0.252 g (88%), recrystalized from ethanol to afford pale yellow needles; M.p. 114-117 °C. IR (KBr): 3,031 m, 1,649 s, 1,027 mcm⁻¹. ¹H NMR (300 MHz CDCl₃) δ : 3.98 (s, 3 H, OCH₃), 7.10 (d, 2 H, J=9.2 Hz, Ar-H), 7.46 (dd, 1 H, J=8.0 & 8.4 Hz, Ar-H), 7.67 (dd, 1 H, J=8.4 & 8.3 Hz, Ar-H), 7.88 (d, 1 H, J=8.0 Hz, Ar-H), 7.94 (d, 2 H, J=9.2 Hz, Ar-H), 8.02 (d, 1 H, J=7.7 Hz, Ar-H), 8.19 (d, 1 H, J=8.3 Hz, Ar-H), 8.28 (d, 1 H, J=7.7 Hz, Ar-H), 8.19 (d, 1 H, J=8.3 Hz, Ar-H), 8.28 (d, 1 H, J=7.7 Hz, Ar-H), 9.25 (s, 1 H, Ar-H). MS (70 eV) m/z (%): 286 [M⁺] (100), 271 (68), 255 (35), 242 (42), 121 (29), 63 (32), 39 (22). Anal. Calcd. for C₁₉H₁₄N₂O (286.33): C, 79.72; H, 4.89; N, 9.79% Found: C, 79.73; H, 4.90; N, 9.77%

2-(2,3-Dimethoxyphenyl)Benzo[b][1, 8]Naphthyridine (13e) Yield: 0.275 g (87%), recrystalized from ethanol to afford yellow crystal; M.p. 119-122 °C. IR (KBr): 3,029 m, 1,646 s, 1,022 mcm⁻¹. ¹H NMR (300 MHz CDCl₃) δ : 3.60 (s, 6 H, 2×OCH₃), 7.08 (d, 1 H, J=8.7 Hz, Ar-H), 7.26 (dd, 1 H, J=2.5 & 8.7 Hz, Ar-H), 7.38 (d, 1 H, J=2.5 Hz, Ar-H), 7.49 (dd, 1 H, J=8.1 & 8.8 Hz, Ar-H), 7.83 (dd, 1 H, J=8.8 & 7.9 Hz, Ar-H), 7.96 (d, 1 H, J=8.1 Hz, Ar-H), 8.16 (d, 1 H, J=7.8 Hz, Ar-H), 8.20 (d, 1 H, J=7.9 Hz, Ar-H), 8.29 (d, 1 H, J=7.8 Hz, Ar-H), 9.12 (s, 1 H, Ar-H). ¹³C NMR (75 MHz CDCl₃) δ : 57.43, 56.79, 115.20, 117.47, 120.12, 121.47, 125.33, 127.12, 127.49, 128.32, 128.78, 129.28, 129.82, 135.43, 137.77, 145.64, 149.74, 152.64, 156.57, 159.71. Anal. Calcd. for C₂₀H₁₆N₂O₂ (316.35): C, 75.94; H, 5.06; N, 8.86% Found: C, 75.92; H, 5.08; N, 8.88%

2-*p*-Tolylbenzo[*b*][1, 8]Naphthyridine (13f) Yield: 0.237 g (87%), recrystalized from ethanol to afford yellow solid; M.p. 92-95 °C. IR (KBr): 3,004 m, 1,640 scm⁻¹. ¹H NMR (300 MHz CDCl₃) δ : 2.48 (s, 3 H, CH₃), 7.44 (d, 2 H, *J*=8.7 Hz, Ar-H), 7.60 (dd, 1 H, *J*=8.2 & 8.5 Hz, Ar-H), 7.98 (dd, 1 H, *J*=8.5 & 8.1 Hz, Ar-H), 8.07 (d, 1 H, *J*=8.2 Hz, Ar-H), 8.29 (d, 2 H, *J*=8.7 Hz, Ar-H), 8.42 (d, 1 H, *J*=7.9 Hz, Ar-H), 8.59 (d, 1 H, *J*=8.1 Hz, Ar-H), 8.68 (d, 1 H, *J*=7.9 Hz, Ar-H), 8.97 (s, 1 H, Ar-H). MS (70 eV) m/z (%): 270 [M⁺] (81), 255 (62), 241 (32), 152 (29), 134 (61), 89 (32). Anal. Calcd. for C₁₉H₁₄N₂ (270.33): C, 84.44; H, 5.18; N, 10.37% Found: C, 84.45; H, 5.17; N, 10.35%

2-(4-Nitrophenyl)Benzo[b][1, 8]Naphthyridine (13 g) Yield: 0.239 g (79%), recrystalized from ethanol to afford brown solid; M.p. 115-118 °C. IR (KBr): 3,033 m, 1,540 m, 1,372 mcm⁻¹. ¹H NMR (300 MHz CDCl₃) δ : 7.45 (dd, 1 H, J=7.9 & 7.8 Hz, Ar-H), 7.54 (d, 2 H, J=8.8 Hz, Ar-H), 7.68 (dd, 1 H, J=7.8 & 8.0 Hz, Ar-H), 8.02 (d, 1 H, J= 7.9 Hz, Ar-H), 8.22 (d, 1 H, J=8.0 Hz, Ar-H), 8.36 (d, 1 H, J=8.9 Hz, Ar-H), 8.43 (d, 1 H, J=8.9 Hz, Ar-H), 8.56 (d, 2 H, J=8.8 Hz, Ar-H), 9.18 (s, 1 H, Ar-H). MS (70 eV) m/z (%): 301 [M+] (88), 255 (82), 179 (55), 77 (68). Anal. Calcd. for C₁₈H₁₁N₃O₂ (301.30): C, 71.76; H, 3.65; N, 13.95% Found: C, 71.77; H, 3.66; N, 13.97%

2-(4-Bromophenyl)-7-Methoxybenzo[b][1, 8]Naphthyridine (13 h) Yield: 0.312 g (85%), recrystalized from ethanol to afford yellow solid; M.p. 248-249 °C. IR (KBr): 3,010 m, 1,642 s, 1,040 mcm⁻¹. ¹H NMR (300 MHz CDCl₃) δ : 4.07 (s, 3 H, OCH₃), 7.34 (d, 1 H, *J*=9.3 Hz, Ar-H), 7.46 (s, 1 H, Ar-H), 7.89 (d, 2 H, *J*=8.1 Hz, Ar- H), 8.04 (d, 1 H, *J*= 7.8 Hz, Ar-H), 8.19 (d, 2 H, *J*=8.1 Hz, Ar-H), 8.35 (d, 1 H, *J*=9.3 Hz, Ar-H), 9.05 (d, 1 H, *J*=7.8 Hz, Ar-H), 9.46 (s, 1 H, Ar-H). ¹³C NMR (75 MHz CDCl₃) δ : 57.21, 109.42, 122.74, 123.24, 123.66, 126.47, 127.89, 129.30 (2 C's), 131.51, 133.46 (2 C's), 135.66, 136.94, 138.40, 145.55, 153.26, 156.19, 158.74. MS (70 eV) m/z (%): 364 [M⁺] (89), 366 [M+2] (88), 285 (45), 242 (57), 142 (32), 121 (51). Anal. Calcd. for C₁₉H₁₃N₂BrO (365.23): C, 62.63; H, 3.57; N, 7.69% Found: C, 62.64; H, 3.56; N, 7.70%

2-(4-Chlorophenyl)-7-Methoxybenzo[b][1, 8]Naphthyridine (13i) Yield: 0.267 g (83%), recrystalized from ethanol to afford yellow crystals; M.p. 254-257 °C. IR (KBr): 3,026 m, 1,635 s, 1,038 mcm⁻¹. ¹H NMR (300 MHz CDCl₃) δ : 4.02 (s, 3 H, OCH₃), 7.18 (d, 1 H, J=9.1 Hz, Ar-H), 7.33 (s, 1 H, Ar-H), 7.74 (d, 2 H, J=8.3 Hz, Ar- H), 7.93 (d, 1 H, J= 7.5 Hz, Ar-H), 8.12 (d, 2 H, J=8.3 Hz, Ar-H), 8.43 (d, 1 H, J=9.1 Hz, Ar-H), 9.17 (d, 1 H, J=7.5 Hz, Ar-H), 9.33 (s, 1 H, Ar-H). Anal. Calcd. for C₁₉H₁₃N₂ClO (320.77): C, 71.25; H, 4.06; N, 8.75% Found: C, 71.22; H, 4.09; N, 8.77%

2-(3,5-Bis(Trifluoromethyl)Phenyl)-7-Methoxybenzo[b][1, 8]Naphthyridine (13j) Yield: 0.359 g (85%), recrystalized from ethanol to afford faint green solid; M.p. 199-202 °C. IR (KBr): 3,024 m, 1,642 s, 1,032 mcm⁻¹. ¹H NMR (300 MHz CDCl₃) δ : 4.05 (s, 3 H, OCH₃), 7.39 (d, 1 H, *J*= 9.1 Hz, Ar-H), 7.57 (s, 1 H, Ar-H), 8.08 (d, 1 H, *J*=7.9 Hz, Ar-H), 8.27 (d, 1 H, *J*=9.1 Hz, Ar-H), 8.43 (s, 1 H, Ar-H), 8.78 (s, 2 H, Ar-H), 8.91 (d, 1 H, *J*=7.9 Hz, Ar-H), 9.52 (s, 1 H, Ar-H). MS (70 eV) m/z (%): 423 [M+1] (100), 380 (69), 354 (74), 310 (18), 285 (64). Anal. Calcd. for C₂₁H₁₂N₂F₆O (422.32): C, 59.71; H, 2.84; N, 6.63% Found: C, 59.70; H, 2.85; N, 6.64%

7-*Methoxy*-2-(4-*Methoxyphenyl*)*Benzo*[*b*][1, 8]*Naphthyridine* (13*k*) Yield: 0.272 g (86%), recrystalized from ethanol to afford yellow solid; M.p. 229-232 °C. IR (KBr): 3,021 m, 1,639 s, 1,036 mcm⁻¹. ¹H NMR (300 MHz DMSO- d_6) δ : 3.89 (s, 3 H, OCH₃), 4.02 (s, 3 H, OCH₃), 7.21 (d, 2 H, *J*= 8.5 Hz, Ar-H), 7.39 (d, 1 H, *J*=8.2 Hz, Ar-H), 7.50 (s, 1 H,

Ar-H), 7.64 (d, 2 H, J=8.5 Hz, Ar-H), 8.12 (d, 1 H, J=8.1 Hz, Ar-H), 8.22 (d, 1 H, J=8.2 Hz, Ar-H), 8.84 (d, 1 H, J=8.1 Hz, Ar-H), 9.38 (s, 1 H, Ar-H). ¹³C NMR (75 MHz CDCl₃) δ : 55.39, 55.62, 105.80, 114.13 (2 C's), 117.76, 118.57, 121.45, 122.95, 129.05, 129.68 (2 C's), 131.20, 136.62, 137.75, 153.01, 155.26, 161.18, 161.70, 162.10. MS (70 eV) m/z (%): 316 [M⁺] (100), 301 (32), 230 (19), 158 (15), 115 (12). Anal. Calcd. for C₂₀H₁₆N₂O₂ (316.35): C, 75.94; H, 5.06; N, 8.86% Found: C, 75.95; H, 5.08; N, 8.87%

7-*Methoxy*-2-(2,3-*Dimethoxyphenyl*)*Benzo*[*b*][1, 8]*Naphthyridine* (13 *l*) Yield: 0.307 g (88%), recrystalized from ethanol to afford yellow crystals; M.p. 238-241 °C. IR (KBr): 3,026 m, 1,635 s, 1,038 mcm⁻¹. ¹H NMR (300 MHz DMSO-*d*₆) δ : 3.80 (s, 6 H, 2×OCH₃), 4.04 (s, 3 H, OCH₃), 7.10 (d, 1 H, *J*=9.2 Hz, Ar-H), 7.18 (dd, 1 H, *J*=2.4 & 9.2 Hz, Ar-H), 7.29 (d, 1 H, *J*=2.4 Hz, Ar-H), 7.41 (d, 1 H, *J*=8.6 Hz, Ar-H), 7.52 (s, 1 H, Ar-H), 7.97 (d, 1 H, *J*=8.2 Hz, Ar-H), 8.25 (d, 1 H, *J*=8.6 Hz, Ar-H), 8.95 (d, 1 H, *J*=8.2 Hz, Ar-H), 9.32 (s, 1 H, Ar-H). MS (70 eV) m/z (%): 345 [M-1] (100), 331 (49), 315 (42), 300 (41), 286 (19), 151 (19), 108 (12). Anal. Calcd. for C₂₁H₁₈N₂O₃ (346.38): C, 72.83; H, 5.20; N, 8.09% Found: C, 72.85; H, 5.21; N, 8.10%

7-*Methoxy*-2-*p*-*Tolylbenzo[b][1, 8]Naphthyridine (13 m)* Yield: 0.261 g (87%), recrystalized from ethanol to afford yellow prism; M.p. 208-211 °C. IR (KBr): 3,035 m, 1,625 s, 1,026 mcm^{-1.} ¹H NMR (300 MHz CDCl₃) δ : 2.47 (s, 3 H, CH₃), 3.98 (s, 3 H, OCH₃), 7.35 (d, 1 H, *J*=8.7 Hz, Ar-H), 7.49 (d, 2 H, *J*=8.5 Hz, Ar-H), 7.59 (s, 1 H, Ar- H), 7.95 (d, 2 H, *J*=8.5 Hz, Ar-H), 8.12 (d, 1 H, *J*=7.9 Hz, Ar-H), 8.25 (d, 1 H, *J*=8.7 Hz, Ar-H), 8.49 (d, 1 H, *J*=7.9 Hz, Ar-H), 8.83 (s, 1 H, Ar-H). MS (70 eV) m/z (%): 300 [M⁺] (97), 285 (92), 209 (77), 77 (89). Anal. Calcd. for C₂₀H₁₆N₂O (300.35): C, 80.00; H, 5.33; N, 9.33% Found: C, 79.98; H, 5.32; N, 9.35%

7-*Methoxy-2-(4-Nitrophenyl)Benzo[b]*[1, 8]*Naphthyridine* (13*n*) Yield: 0.265 g (80%), recrystalized from ethanol to afford yellow solid; M.p. 191-194 °C, IR (KBr): 3,020 m, 1,642 s, 1,559 m, 1,367 m, 1,045 mcm⁻¹. ¹H NMR (300 MHz DMSO- d_6) δ : 4.03 (s, 3 H, OCH₃), 7.32 (d, 2 H, *J*=8.3 Hz, Ar-H), 7.48 (d, 1 H, *J*=8.5 Hz, Ar-H), 7.52 (s, 1 H, Ar-H), 8.01 (d, 1 H, *J*=7.7 Hz, Ar-H), 8.19 (d, 1 H, *J*=8.5 Hz, Ar-H), 8.30 (d, 2 H, *J*=8.3 Hz, Ar-H), 8.98 (d, 1 H, *J*=7.7 Hz, Ar-H), 9.37 (s, 1 H, Ar-H). Anal. Calcd. for C₁₉H₁₃N₃O₃ (331.33): C, 68.88; H, 3.92; N, 12.68% Found: C, 68.89; H, 3.94; N, 12.70%

Synthesis of 9,10-Dimethoxy-7H-Benzo[b]Indeno[1,2-g][1, 8] Naphthyridine (15 a-d) The mixture of 2-aminoquinoline-3carbaldehyde (**1a-b**) (0.01 mol) & indanone (**14a-b**) (0.01 mol) in ethanolic potassium hydroxide solution (10 mL, 2%) was refluxed for 1 h. Completion of the reaction was monitored by Thin Layer Chromatography (TLC). The mixture was then dumped over ice-crushed water (20 mL) and stirred for the 30 mins. The separated solid product was collected by suction filtration, washed with pet-ether, dried and recrystallized from Methanol.

9,10-Dimethoxy-7H-Benzo[b]Indeno[1,2-g][1, 8]Naphthyridine (15a) Yield: 0.281 g (85%), recrystalized from Methanol to afford yellow solid; M.p. 269-272 °C. IR (KBr): 2,997 m, 2,968 m, 1,618 s, 1,024 mcm⁻¹. ¹H NMR (300 MHz CDCl₃) δ : 3.89 (s, 2 H, CH₂), 3.95 (s, 3 H, OCH₃), 4.01 (s, 3 H, OCH₃), 6.78 (s, 1 H, Ar-H), 7.34 (dd, 1 H, *J*=7.8 & 8.7 Hz, Ar-H), 7.55 (s, 1 H, Ar-H), 7.79 (dd, 1 H, *J*=8.7 & 8.1 Hz, Ar-H), 8.09 (d, 1 H, *J*=7.8 Hz, Ar-H), 8.36 (d, 1 H, *J*=8.1 Hz, Ar-H), 8.78 (s, 1 H, Ar-H), 9.19 (s, 1 H, Ar-H). Anal. Calcd. for C₂₁H₁₆N₂O₂ (328.36): C, 76.82; H, 4.87; N, 8.53% Found: C, 76.84; H, 4.88; N, 8.55%

2,9,10-Trimethoxy-7H-Benzo[b]Indeno[1,2-g][1, 8]Naphthvridine (15b) Yield: 0.319 g (89%), recrystalized from Methanol to afford yellow needles; M.p. 231-233 °C. IR (KBr): 3,012 s, 2,977 m, 1,607 s, 1,011 mcm⁻¹.¹H NMR (300 MHz CDCl₃) δ: 3.75 (s, 2 H, CH₂), 3.88 (s, 3 H, OCH₃), 3.96 (s, 3 H, OCH₃), 4.05 (s, 3 H, OCH₃), 6.87 (s, 1 H, Ar-H), 7.43 (d, 1 H, J=8.8 Hz, Ar-H), 7.51 (s, 1 H, Ar-H), 7.67 (s, 1 H, Ar-H), 8.94 (d, 1 H, J=8.8 Hz, Ar-H), 9.21 (s, 1 H, Ar-H), 9.44 (s, 1 H, Ar-H). ¹³C NMR (75 MHz CDCl₃) δ: 33.47, 55.55, 56.16, 56.38, 104.87, 105.77, 107.41, 113.81, 118.60, 120.77, 122.48, 128.86, 130.57, 132.14, 134.45, 136.43, 149.77, 151.94, 152.73, 155.69, 161.68, 166.94. MS (70 eV) m/z (%): 358 [M⁺] (58), 327 (51), 288 (56), 207 (57), 189 (50), 175 (62), 164 (82), 150 (87), 131 (74), 118 (70), 91 (68), 63 (42). Anal. Calcd. for C₂₂H₁₈N₂O₃ (358.39): C, 73.74; H, 5.02; N, 7.82%. Found: C, 73.75; H, 5.04; N, 7.84%.

7*H*-Benzo[b]Indeno[1,2-g][1, 8]Naphthyridine (15c) Yield: 0.217 g (80%), recrystalized from Methanol to afford yellow solid; M.p. 277-280 °C. IR (KBr): 3,014 m, 2,968 m, 1,618 scm⁻¹. ¹H NMR (300 MHz CDCl₃) δ : 3.94 (s, 2 H, CH₂), 7.24-7.32 (m, 4 H, Ar-H), 7.42 (dd, 1 H, *J*= 8.2 & 8.4 Hz, Ar-H), 7.79 (dd, 1 H, *J*=8.4 & 8.1 Hz, Ar-H), 8.09 (d, 1 H, *J*=8.2 Hz, Ar-H), 8.36 (d, 1 H, *J*=8.1 Hz, Ar-H), 8.78 (s, 1 H, Ar-H), 9.19 (s, 1 H, Ar-H). Anal. Calcd. for C₁₉H₁₂N₂ (268.31): C, 85.07; H, 4.47; N, 10.44%. Found: C, 85.10; H, 4.48; N, 10.45%.

2-Methoxy-7H-Benzo[b]indeno[1,2-g][1, 8]Naphthyridine (15d) Yield: 0.259 g (86%), recrystalized from Methanol to afford yellow needles; M.p. 252-255 °C. IR (KBr): 3,012 m, 2,968 m, 1,611 s, 1,011 mcm⁻¹.¹H NMR (300 MHz CDCl₃) δ : 3.82 (s, 2 H, CH₂), 4.05 (s, 3 H, OCH₃), 7.09-7.38 (m, 4 H, Ar-H), 7.43 (d, 1 H, *J*=8.6 Hz, Ar-H), 7.51 (s, 1 H, Ar-H), 8.24 (d, 1 H, *J*=8.6 Hz, Ar-H), 9.21 (s, 1 H, Ar-H), 9.44 (s, 1 H, Ar-H). MS (70 eV) m/z (%): 298 [M⁺] (100), 277 (32), 255 (64), 227 (32), 149 (38), 128 (45), 114 (18), 77 (13). Anal. Calcd. for C₂₀H₁₄N₂O (298.34): C, 80.53; H, 4.69; N, 9.39%. Found: C, 80.55; H, 4.70; N, 9.40%.

Acknowledgement The authors thank to CSIR, New Delhi, India, for financial support for this research project. We thank Professor D. D. Dhavale, Department of Chemistry, University of Pune, Pune, India, for his valuable cooperation for the measurement of ¹H NMR, ¹³C NMR, Mass and Elemental Analysis. Authors also thanks to Dr. V. B. Gaikwad, Principal. K. R. T. Arts, B. H. Commerce and A. M. Science College, Nashik-02, MS, India, for valuable cooperation for the measurement of IR, UV and Fluorescence spectra.

References

- 1. Meijere A de (1998) In topics in current chemistry, carbon-rich compounds, I, (Ed.) Springer, Berlin, Germany, vol 196
- 2. Meijere A de (1999) In topics in current chemistry, carbon-rich compounds, II, (Ed.) Springer, Berlin, Germany, vol 201
- 3. Diederich F, Stang PJ, Tykwinski RR (2005) In acetylene chemistry: chemistry, biology and material science, (Eds.) Wiley-VCH, Weinheim, Germany
- Haley MM, Tykwinski RR (2006) In carbon-rich compounds: from molecules to materials, (Eds.) Wiely-VCH, Weinheim, Germany
- Műllen K, Scherf U (2006) In organic light emitting devices: synthesis properties and applications (Eds.): Wiely-VCH, Weinheim, Germany
- Chen J, Reed MA, Dirk SM, Price DW, Rawlett AM, Tour JM, Grubisha DS, Bennett DW (2003) In NATO science series II, mathematics, physics, chemistry (Molecular Electronics: Bio-Sensors and Bio-Computers) (Eds.): Plenum, New York, Vol. 96: pp 59-195
- Domerco B, Hreha RD, Zhang YD, Haldi A, Barlow S, Marder SR, Kippelen B (2003) Organic light-emitting diodes with multiple photocrosslinkable hole-transport layers. J Polym Sci Part B: Polym Phys 41(21):2726–2732
- Shirota Y (2000) Organic materials for electronic and optoelectronic devices. J Mater Chem 10:1–25
- 9. Schwab PFH, Levin MD, Michl J (1999) Molecular rods. 1. Simple axial rods. Chem Rev 99:1863–1933
- Műllen K, Wehner G (1998) In electronic materials: the oligomer approach, (Eds.) Wiely-VCH, Weinheim, Germany
- 11. Nalwa HS, Miyata S (1997) In nonlinear optics of organic molecules and polymers (Eds.) CRC Press, Boca Raton, FL
- Kang H, Evrenenko G, Dutta P, Clays K, Song K, Marks TJ (2006) X-shaped electro-optic chromophore with remarkably blue-shifted optical absorption. synthesis, characterization, linear/ nonlinear optical properties, self-assembly, and thin film microstructural characteristics. J Am Chem Soc 128:6194–6205
- Knox JE, Halls MD, Hratchian HP, Schlegel HB (2006) Chemical failure modes of Alq3-based OLEDs: Alq3 hydrolysis. Phys Chem Chem Phys 8:1371–1377
- Shukla VK, Kumar S, Deva D (2006) Light induced effects on the morphology and optical properties of tris-(8-hydroxyquinoline) aluminium (Alq₃) small molecular thin film. Synth Met 156:387– 391

- Seminario JM (2005) Molecular electronics: approaching reality. Nat Mater 4:111–113
- Hughes G, Bryce MR (2005) Electron-transporting materials for organic electroluminescent and electrophosphoresc-ent devices. J Mater Chem 15:94–107
- Van der Auweraer M, De Schryver FC (2004) Organic electronics: supra solutions. Nat Mater 3:507–508
- Special Issue on Organic Electronics (2004) Chem Mater 16:4381–4846
- Simpson CD, Wu J, Watson MD, Müllen K (2004) From graphite molecules to columnar superstructures-an excercise in nanoscience. J Mater Chem 14:494–504
- Kapturkiewicz A, Herbich J, Nowacki J (1997) Highly efficient electrochemical generation of fluorescent intramolecular chargetransfer states. Chem Phys Lett 275:355
- Herbich J, Kapturkiewicz A (1997) Electronic and molecular structure of charge transfer singlet states: 4-(9-anthryl)julolidine and 4-(9-acridyl)julolidine. Chem Phys Lett 273:8
- Herbich J, Kapturkiewicz A, Nowacki J (1996) Phosphorescent intramolecular charge transfer triplet states. Chem Phys Lett 262:633
- Rechthaler K, Schamschule R, Parusel ABJ, Rotkiewicz K, Piorun D, Köhler G (1999) Fluorescence properties of an electron acceptor substituted bis-pyrazolo-pyridine derivative: NO₂-DMPP. Acta Phys Polon A 95:321
- Miyasaka H, Itaya A, Rotkiewicz K, Rechthaler K (1999) Picosecond laser photolysis studies of DMA–DMPP in solution. Chem Phys Lett 307:121

- Rotkiewicz K, Rechthaler K, Puchala A, Rasala D, Styrcz S, Köhler G (1996) Dual fluorescence and intramolecular charge transfer in a bulky electron donor-acceptor system. N, N-Dimethylanilino-bis-pyrazolopyridine. J Photochem Photobiol A: Chem 98:15–19
- Parusel ABJ, Schamschule R, Köhler G (1998) Theoretical description of solvent effects on fluorescence spectra of bulky charge transfer compound DMA-DMPP. J Comput Chem 19:1584
- Parusel ABJ, Schamschule R, Köhler G (1997) A semiempirical study of the fluorescence properties of large charge-transfer compounds. N, N-dimethylanilino-bis-pyrazolopyridine. Ber Bunsenges Phys Chem 101:1836–1843
- Singh AK, Kanvah S (2000) Effect of micro heterogeneous media on fluorescence and fluorescence probe properties of diarylpolyenes. New J Chem 24:639–646
- 33. Singh AK, Manjula D, Kanvah S (2000) α , ω -diphenylpolyenes cabable of exhibiting twisted intramolecular charge transfer fluorescence: a fluorescence and fluorescence probe study of nitro- and nitrocyano-substituted 1, 4-diphenyl butadienes. J Phys Chem A 104:464–471
- Singh AK, Krishna TSR (1997) Photophysical and optical probe properties of 1-(p-N, N-Dimethylaminophenyl)-4-Phenyl-2-Methyl-1E, 3E-Butadiene. J Photosci 4:1–5
- Singh AK, Darshi M (2004) A fluorescence study of (4-{(1E, 3E)-4-[4-(dimethyl-amino)phenyl]- buta-1, 3-dienyl}phenyl)methanol

and its bioconjugates with bovine and human serum albumins. New J Chem $28{:}120{-}126$

- 36. Caluwe P (1980) Heteroannelations with o-aminoaldehydes. Tetrahedron 36:2359
- Fehnel EA (1966) Friedländer syntheses with o-aminoaryl ketones. I. Acid-catalyzed condensations of o-aminobenzophenone with ketones. J Org Chem 31:2899
- Boekelheide V, Nottke JE (1969) Novel cyclization reaction of acetylene derivatives. J Org Chem 34(12):4134–4136
- Liao TK, Nyberg WH, Cheng CC (1971) Total synthesis of camptotheein. I. Synthesis of ethyl 8-(α-chlorobutyryloxymethyl)-7,9-dioxo-7,8,9,11-tetrahydro indolizino [1,2-a]quinoline-8-carboxylate and related tetracyclic compounds. J Heterocyclic Chem 8:373
- Zalkow LH, Nabors JB, French K, Bisarya SC (1971) Studies in the synthesis of Camptothecin. An efficient synthesis of 2,3-dihydro-1Hpyrazolo[3,4-b]quinoline. J Chem Soc (C):3551-3554.
- Borch RF, Grudzinskas CV, Peterson DA, Weber LD (1972) New synthesis of substituted 2(1 H)-pyridones. Synthesis of a potential camptothecin intermediate. J Org Chem 37(8):1141–1145
- Croisy A, Jacqquignon P, Fravolini A (1974) Sur quelques analogues fluores des [1] benzothiopyrano[4, 3-b]indoles et des 6 H[1] benzothiopyrano[4, 3-b]quinoleines. J Heterocyclic Chem 11:113
- Cliff GR, Jones G, Woollard J McK (1974) Intramolecular nitrene insertions into aromatic and heteroaromatic systems. Part II. Insertions into thiophen rings. J Chem Soc Perkin I:2072–2076
- 44. Sugasawa T, Toyoda T, Sasakura K (1974) Experiments on the synthesis of dl-camptothecin. III. Total synthesis of dlcamptothecin. Chem Pharm Bull 22:771–781
- Tang CSF, Morrow CJ, Rapoport H (1975) Total synthesis of dlcamptothecin. J Am Chem Soc 97:159
- 46. Da SA, Primofiore G, Livo O, Ferrarini PL, Spinelli S (1979) Synthesis of some 3-substituted quino[3, 2-c][1, 8]naphtyridines. A new heterocyclic ring system. J Heterocyclic Chem 16:169
- 47. Hawes EM, Wibberley DG (1966) 1,8-Naphthyridines. J Chem Soc:315-321
- Majewicz TG, Caluwe P (1975) Chemistry of o-aminoaldehydes. Reactions of 2-aminonicotinaldehyde and cyclohexanediones. J Org Chem 40(23):3407–3410
- Hawes EM, Wibberley DG (1967) 1,8-Naphthyridines. Part II. Preparation and some reactions of 2-substituted derivatives. J Chem Soc (C):1564-1568.
- Hawes EM, Gorecki DKJ, Gedir RG (1977) 2, 3-Disubstituted 1, 8-naphthyridines as potential diuretic agents. 2. 5, 7-Dimethyl derivatives. J Med Chem 20(6):838–841
- Haufel J, Breitmaier E (1974) Synthesis of pyrazolo heteroaromatic compounds by means of 5-amino-3-methyl-1-phenylpyrazole-4-carbaldehyde. Angew Chem Internat Edit 13(9):604
- Simay A, Takacs K, Toth L (1982) Aminopyrazoles, II. Synthesis of pyrazolo[3, 4-b] pyridines via Vilsmeier-Haack reaction of 5acetaminopyrazoles. Acta Chim Acad Sci Hung 109:175–187
- Ahluwalia VK, Dahiya A (1996) Synthesis of pyrazolo[3', 4': 5, 6]pyrido[2, 3-d] pyrimidines. Indian J Chemistry 35B:1208–1210
- Ahluwalia VK, Dahiya A, Garg VK (1997) Reaction of 5- amino-4-formyl-3-methyl (or phenyl)-1-phenyl-1 H-prazoles with compounds containing active methylene group: synthesis of fused heterocyclic rings. Indian J Chemistry 36B:88–90
- 55. Godard A, Queguiner G (1980) Sur les orthoamino formyl quinoleines, nouveaux synthons heterocycliques. J Heterocyclic Chem 17:465

- Godard A, Queguiner G (1982) Synthesis of Benzonaphthyridines. J Heterocyclic Chem 19:1279
- 57. Jachak MN, Avhale AB, Tantak CD, Toche RB (2005) Friedländer condensation of 5-Aminopyrazole-4-carbaldehydes with reactive α-methylene ketones: synthesis of pyrazolo[3, 4-b] pyridines. J Heterocyclic Chem 42:1311–1319
- Jachak MN, Avhale AB, Tantak CD, Toche RB (2006) A convenient route for the synthesis of pyrazolo[3, 4-d]pyrimidine, pyrazolo[3, 4-b][1, 6]naphthyridine and pyrazolo[3, 4-b]quinoline derivatives. J Heterocyclic Chem 43:1169–1175
- Jachak MN, Avhale AB, Toche RB, Sabnis RW (2007) Synthesis of pyrazolo-annelated heterocyclic ring compounds such as pyrazolo[3, 4-b]pyridines and pyrazolo[4', 3':5, 6]-pyrido[2, 3-d] pyrimidines. J Heterocyclic Chem 44:343–347
- 60. Jachak MN, Bagul SM, Kazi MA, Toche RB (2009) Facile synthesis of novel pyrazolo[3, 4-h][1, 6]naphthyridines derivatives from new 4-amino-pyrazolo[3, 4-b] pyridine-5carbaldehyde. J Heterocyclic Chem 46:343
- Toche RB, Bhavsar DC, Kazi MA, Bagul SM, Jachak MN (2010) Synthesis of pyrazolopyridine 3-carboxylates by Friedlander condensation. J Heterocyclic Chem 47:287–291
- 62. Shelar DP, Birari DR, Rote RV, Patil SR, Toche RB, Jachak MN (2010) Novel Synthesis of 2-aminoquinoline-3-carbaldehyde, benzo[*b*][1, 8] naphthyridines and study of their fluorescence behavior. J Phys Org Chem. doi:10.1002/poc.1727
- 63. Peters T (1985) Serum albumin. Jr Advan Prot Chem 37:161-245
- Zollinger H (2003) Color Chemistry, 3rd ed., Switzerland, Page No.479
- 65. Stewart JJP (1990) J Comput-Aided Mol Des 4:1
- 66. Stewart JJP. QCPE Bull. (1989), 9, 10. QCPE program no. 455
- 67. Perov AN (1980) Energy of intermediate pair interactions as a characteristics of their nature. Theory of the solvate (Fluoro) Chromism of three-component solutions. Opt Spectrosc 49:371–374
- Neporent BS, Bakhshiev NG (1960) On the role of universal and specific intermolecular interactions in the influence of the solvent on the electronic spectra of molecules. Opt Spectrosc 8:408–413
- 69. Dey JK, Warner IM (1998) Charge-transfer effects on the fluorescence spectra of 9-aminocamptothecin steady-state and time-resolved fluorescence studies. J Photochem Photobiol A: Chem 116:27
- Biswas A, Dey JK (2001) Ground and excited state ionization behavior of 9-aminocamptothecin: an absorption and fluorescence study. Indian J Chem 40A:1143–1148
- Lakowicz JR (1999) In principals of fluorescence spectroscopy, 2nd ed., New York
- Fletecher AN (1969) Quinine sulfate as a fluorescence quantum yield standard. Phot Chem Photo Biol 9(5):439–444
- Eastman JW (1967) Quantitative spectrofluorimetry-the fluorescence quantum yield of quinine sulfate. Photo Chem Photo Biol 6 (1):55–72
- 74. Adams MJ, Highfield JG, Kirkbright GF (1977) Determination of absolute fluorescence quantum efficiency of quinine bisulfate in aqueous medium by optoacoustic spectrometry. Anal Chem 49 (12):1850–1852
- Meech SR, Phillips D (1983) Photophysics of some common fluorescence standards. J Photochem 23:193–217
- Papadopoulou A, Green RJ, Frazier A (2005) Interaction of flavonoids with bovine serum albumin: a fluorescence quenching study. J Agric Food Chem 53:158–163